Globally Convergent Evolution Strategies and CMA-ES

نویسندگان

  • Y. Diouane
  • S. Gratton
  • L. N. Vicente
چکیده

In this paper we show how to modify a large class of evolution strategies (ES) to rigorously achieve a form of global convergence, meaning convergence to stationary points independently of the starting point. The type of ES under consideration recombine the parents by means of a weighted sum, around which the offsprings are computed by random generation. One relevant instance of such ES is CMA-ES. The modifications consist essentially of the reduction of the size of the steps whenever a sufficient decrease condition on the function values is not verified. When such a condition is satisfied, the step size can be reset to the step size maintained by the ES themselves, as long as this latter one is sufficiently large. We suggest a number of ways of imposing sufficient decrease for which global convergence holds under reasonable assumptions, and extend our theory to the constrained case. Given a limited budget of function evaluations, our numerical experiments have shown that the modified CMA-ES is capable of further progress in function values. Moreover, we have observed that such an improvement in efficiency comes without deteriorating the behavior of the underlying method in the presence of nonconvexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Globally convergent evolution strategies

In this paper we show how to modify a large class of evolution strategies (ES’s) for unconstrained optimization to rigorously achieve a form of global convergence, meaning convergence to stationary points independently of the starting point. The type of ES under consideration recombines the parent points by means of a weighted sum, around which the offspring points are computed by random genera...

متن کامل

THE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...

متن کامل

Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing

The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...

متن کامل

A parallel multi-objective optimization algorithm for the calibration of mathematical models

Based on evolutionary computation techniques, we present a parallel, globally convergent, multiobjective optimization algorithm which extends the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES). This approach enables identifying multiple global optima and multiple discontinuous Pareto set solutions of the optimization problem in a compact search space. After evaluating the algorithm...

متن کامل

Fractionally spaced CMA equalizers under periodic and correlated inputs

CMA Fractionally Spaced Equalizers (CMA-FSEs) have been shown, under certain conditions, to be globally asymptotically convergent to a setting which provides perfect equalization. Such a result relies heavily on the assumptions of a white source and no channel noise (as is the case in much of the literature’s analysis of CMA). Herein, we relax the white source assumption and examine the effect ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012